The fate of super-AGB stars at low metallicity

Thibaut Decressin

Decressin.Thibaut@obs.unige.ch Ph-D thesis at Geneva Observatory with Corinne Charbonnel

Gdansk 2005

Introduction

Astrophysical interest of sAGB stars:
peculiar nucleosynthesis.

- can be important contributors to enrich the ISM.
- can be progenitors of ONe WD and neutrons stars.

From observational point of view:

- Find a peak at 1.2 M_{\odot} in the WD distribution;
- But no PN is find with such high mass central object.
- Some hints that sAGB can be precursors of SNIIp/n.

At $Z = 10^{-4}$, sAGB mass range is $7 - 9 M_{\odot}$. \Rightarrow We investigate a 8.5 M_{\odot} star at $Z = 10^{-4}$ with the stellar evolution code STAREVOL in order to determine its fate.

• Collaboration with: L.Siess, G. Leclair and C. Charbonnel.

H and He burning phases

Convective envelope sinks until it reaches the HBS which burns out.

Off-center Carbon burning

CO core is degenerate after He-burning. HeBS increases T and ρ in the core until C ignites off center.

C flash (L_C = 1.4 × 10⁶ L_☉) generates a first convective zone;
1.6 × 10⁶ yr after central He-burning.
M^{CO}_{core} = 1.18 M_☉
M^C_{igni} = 0.34 M_☉

Off-center Carbon burning

CO core is degenerate after He-burning. HeBS increases T and ρ in the core until C ignites off center.

• C flash ($L_C = 1.4 \times 10^6 L_{\odot}$) generates a first convective zone;

 After contraction a second convective zone appears.

It propagates as a flame toward the center.

End of C burning, composition of the center: • ${}^{16}O = 0.65$, ${}^{20}Ne = 0.26$; • traces of: ${}^{23}Na$, ${}^{24}Mg$, ${}^{25}Mg$, ${}^{21}Ne$, ${}^{12}C$, ${}^{26}Mg$, ${}^{27}Al$, ${}^{28}Si$.

 \Rightarrow AGB phase begins with a ONe core of 1.22 $M_{\odot}.$

Surface abundances:He raises to 0.36.

• Z increases to 6×10^{-4} (mostly ¹²C, partly ¹⁶O and ¹⁴N).

After 2DUP the star has lost $3 \times 10^{-3} M_{\odot}$.

End of s-AGB

 \Rightarrow Fate of sAGB depends on the competition between mass loss and the growth of the core during the AGB phase.

 $M_{\text{core}} = 1.37 \ M_{\odot}$

Electrons captures occur:
first on ²⁷AI: ²⁷AI + e⁻→²⁷Mg
then on ²⁵Mg, ²³Na, ²⁰Ne...
O deflagration which goes outward in the star.

 \Rightarrow SN with a neutrons star remnant.

 $M_{core} < 1.37~M_{\odot}$

- Mass loss is efficient to expel the envelope.
- Electrons captures are prevented.

 \Rightarrow planetary nebulae and a ONe white dwarf.

AGB phase

AGB phase with several assumptions on mass loss rate and mixing:

High mass loss

- Blöcker (1995).
- Case A:
 no overshoot.
- Case B:
 with diffusive overshoot.

Low mass loss

de Jager et al. (1988).
Case C:

no overshoot.

In all cases mass loss rates are scaled with $\sqrt{Z/Z_{\odot}}$.

Diffusive overshoot follows Herwig (2000) below the envelope: $D_{ov} = D_0 \exp\left(\frac{-2z}{f.H_p}\right), \quad z = r_{BCE} - r \quad and \quad f = 0.004.$

AGB: Blöcker, no OV

This model has been evolved through 176 thermal pulses. τ (TPAGB) $\simeq 1.8 \times 10^4$ yr. • Characteristics of the pulses: 6 • Weak: (L_{\odot}) 5 log LHe Short: Frequent; No 3DUP. 8 (cgs) Very efficient HBB. 6 • Mass loss rate: $1.6 \times 10^{-4} M_{\odot}/yr$ 1.24 \Rightarrow star loses 3.3 M $_{\odot}$. ([™] 1.235 • Core growth from 1.228 M_{\odot} to M_{CE} 1.23 1.240 M_☉. 15000 20000 25000 30000 $t - t_{CB}$ (yr)

 \Rightarrow will end as a planetary nebulae and a ONe white dwarf.

AGB: Blöcker, with OV

- Model has evolved through 28 thermal pulses.
- Mass loss history follows precious case.
- OV induces:
 - 3DUP occurs ($\lambda = 0.5$).
 - He burning shell is more extinguished.
 - longer interpulses, and stronger pulses (L_{He} = 4 imes 10⁶ L $_{\odot}$).
- Effect on the core:
 - core increases slower during EAGB and interpulses;
 - Convective envelope shrinks during 3DUP.
- \Rightarrow will end as a PN and a ONe WD

AGB: de Jager, no OV

- This model has been evolved through 136 pulses during 19000 yr.
- Pulses are similar to case A.
- Low mass loss: ~ $1.9 \times 10^{-6} M_{\odot}/yr \Rightarrow$ It loses $3 \times 10^{-2} M_{\odot}$.
- The core growths from 1.228 to 1.237 M_{\odot} .

To reach a core of 1.37 M_{\odot} : • this model needs 3 × 10⁵ yr.

- In the same time, the star will lose 0.5 M_{\odot} .
- \Rightarrow will end as a SN and a neutron star.

Conclusions

- 8.5 M_{\odot} , Z = 10⁻⁴ star ignites carbon off-center before reaching AGB phase.
- C-burning propagates toward the center in a flamme.
- End of AGB phase depends on mass loss and overshoot:
 Models with hight mass loss rate will end as a PN and ONe WD.
 - Models with low mass loss rate will explode as a SN and become a neutron star.
 - Overshoot seems to have a secondary role.

Fate of other mass and metallicity ? More soon...