Czerwone układy w przeglądzie ASAS

Nowe małomasywne układy zaćmieniowe – obserwacje i analiza

Krzysztof Hełminiak CAMK Toruń, 03.04.2008

Plan wystąpienia

- "z czym to się je?", czyli krótki wstęp
- <u>A</u>ll <u>Sky</u> <u>Automated</u> <u>Survey</u>
- obiekty i obserwacje
- metody i oprogramowanie (TODCOR, PHOEBE)
- trochę bardziej niż wstępne wyniki:
 - ASAS J045304-0700.4
 - ASAS J082552-1622.8
 - inne?

UKŁADY PODWÓJNE ZAĆMIENIOWE ROZDZIELONE, SKŁADAJĄCE SIĘ Z DWÓCH KARŁÓW TYPU M LUB K

...a po co?

- Rozdzielone układy zaćmieniowe pozwalają bezpośrednio wyznaczyć parametry kluczowe dla modeli ewolucyjnych, czyli masę, promień, temperaturę, jasność bolometryczną itd...
- Dla typów K i M istnieje znacząca różnica między relacjami (np. masapromień) przewidywanymi przez modele, a otrzymanymi z obserwacji
- Teoria konwekcji jest conajmniej niedoskonała
- Nie rozumiemy dokładnie wpływu rotacji, aktywności i metaliczności na ewolucję karłów późnych typów
- Obecnie opublikowanych jest tylko 12 interesujących nas układów – TO ZA MAŁO

Ribas et al. 2007

All Sky Automated Survey 3

http://www.astrouw.edu.pl/~gp/asas/asas.html

- 4 małe teleskopy w obserwatorium Las Campanas (Chile)
- Obserwacje w filtrach V (ASAS-3) oraz I (ASAS-2)
- Pełne pokrycie nieba dla $\delta <+28^{\circ}$
- Monitoring 17 mln gwiazd jaśniejszych niż 14mag
- Ponad 50 000 gwiazd zmiennych, w tym ponad 11 000 zaćmieniowych
- Odkrycie ponad 39 000 zmiennych, w tym kilkanastu nowych i nowych karłowatych
- Odkrycie 2 komet

Paczyński et al. 2006

Niestety, dostępna fotometria przeważnie nie jest wystarczająco dobra:

Próbka

- Z katalogu ASAS-3 wybranych zostało 69 zmiennych zaćmieniowych o okresach < 8d oraz (V I) > 2.5
- Po inspekcji dostępnych krzywych blasku odrzuconych zostało 34
- 19 z pozostałych było obserwowanych spektroskopowo (prędkości radialne):
 - 2004 05, Keck I + HIRES (Maciej Konacki), obserwacje próbne trzech układów
 - czerwiec 2006 marzec 2007, 1.9-m Radcliffe + GIRAFFE (K.H.+M.K.)
 - kwiecien maj 2007, 3.5-m TNG + SARG (M.K.), jeden obiekt
 - październik 2007, 3.0-m Shane + HamSpec (M. Muterspaugh), jeden obietk
- Krzywe RV oraz *Msin(i)* dla 9 układów
- 5 układów z dwoma składnikami o masach < 1 M_{SUN}: 011328-3821.1, 045304-0700.4, 082552-1622.8, 125516-3156.7, 212954-5620.1
- Styczeń 2008 obserwacje fotometryczne w filtrach V oraz I na 1.0-m Elizabeth w SAAO

TODCOR

Zucker & Mazeh 1994, ApJ, 420, 806 Zucker, Torres & Mazeh 1995, ApJ, 452, 863

Jednowymiarowa funkcja korelacji krzyżowej (cross correlation function):

$$C_{f,g}(s) = \frac{\sum_n f(n)g(n-s)}{N\sigma_f \sigma_g},$$

f(n) – obserwowane widmo, g(n) – widmo "wzorcowe" (template), s – przesunięcie. Szukamy \hat{s} - położenia ekstremum FKK, które jest równe przesunięciu (dopplerowskiemu) obserwowanego widma względem wzorca

W metodzie TODCOR szukamy przesunięć widma *f* względem dwóch wzorców:

$$C_1(s_1) \equiv \frac{1}{N\sigma_f \sigma_{g_1}} \sum_n f(n)g_1(n-s_1) ,$$

$$C_2(s_2) \equiv \frac{1}{N\sigma_f \sigma_{g_2}} \sum_n f(n)g_2(n-s_2) ,$$

TODCOR

Potrzebujemy też korelacji krzyżowej dwóch wzorców względem siebie:

$$C_{12}(s_2 - s_1) \equiv \frac{1}{N\sigma_{g_1}\sigma_{g_2}} \sum_{n} g_1(n)g_2[n - (s_2 - s_1)] .$$

Pełną FKK podajemy w postaci:

$$R_{f,g_1,g_2}[s_1, s_2, \hat{\alpha}(s_1, s_2)] = \sqrt{\frac{C_1^2(s_1) - 2C_1(s_1)C_2(s_2)C_{12}(s_2 - s_1) + C_2^2(s_2)}{1 - C_{12}^2(s_2 - s_1)}} \,.$$

gdzie:
$$\hat{\alpha}(s_1, s_2) = \left(\frac{\sigma_{g_1}}{\sigma_{g_2}}\right) \left[\frac{C_1(s_1)C_{12}(s_2 - s_1) - C_2(s_2)}{C_2(s_2)C_{12}(s_2 - s_1) - C_1(s_1)}\right]$$
, jest stosunkiem jasności

SZUKAMY MAKSIMUM $R_{f,g1,g2}$ NA PŁASZCZYŹNIE s_1 - s_2

TODCOR w praktyce

względem identycznych wzorców

...ale życie nie pieści:

PHysics Of Eclipsing BinariEs http://phoebe.fiz.uni-lj.si/

Nakładka na kod Wilsona-Devinney'a, której twórcą jest Andrej Prša z Uniwersytetu w Ljubljanie

Eile Settings Help	
Open Save LC Plot RV Plot Fitting Settings Quit	
Data Parameters Fitting Plotting	Ð
LC Plot RV Plot Star Shape	Results summary
	Parameter Value
Options	Ω(L ₁) 3.750000
✓ Vertices: ✓ Aliasing X Phase ♦ ✓ Synthetic 300 ▲	Ω(L ₂) 3.206796
Cheanad U Besiduals Y Total flux + Phase end: 0.60000	P. Lum. 1 5.968480
	P. Lum. 2 5.968480
LC Plot Controls	Mass 1 2.685206
	Mass 2 2.685206
	Radius 1 3.435527
	M 2 3.433327
	Titatin n august 1.942800 (▼
	Printing summary
	Parameter Value Ste
0.7 Grid:	wd_spots_rad1 0.300000 0.0
0.6 Coarse	phoebe_nia[1] 5.968476 0.0
	phoebe_fila[2] 5.993597 0.0
	privebe_rila[3] 0.013802 0.0
Phase	
Plot Save Clear	

ASAS J045304-0700.4

Spektroskopia: Keck I + HIRES, rms~0.5 km/s

 $T_{0,ASAS} = 2451870.32$ $P_{ASAS} = 1.6224$ d

 $K_1 = 107.01 \text{ km/s}$ $K_2 = 107.79 \text{ km/s}$ $v\gamma = 71.60 \text{ km/s}$

 $M_1 \sin^3(i) = 0.823 M_{SUN}$ $M_2 \sin^3(i) = 0.816 M_{SUN}$

Fotometria: Elizabeth, rms: V~0.005, I~0.01 mag

Układ:

 $T_0 = 2451871.163821$ P = 1.622215618 *d* a = 6.8704 *R_{SUN}* e = 0.0029 ω = 301.5 *deg* i = 84.78 *deg* q = 0.99269

 $\frac{\text{Składnik główny:}}{M_1 = 0.833 M_{SUN}}$ $R_1 = 0.84 R_{SUN}$ $\log g_1 = 4.51$ $T_{\text{eff},1} = 5500 K$ $M_{\text{bol},1} = 5.36 mag$

Składnik wtórny: $M_2 = 0.826 M_{SUN}$ $R_2 = 0.86 R_{SUN}$ $\log g_2 = 4.49$ $T_{eff,2} = 5300 K$ $M_{bol,2} = 5.50 mag$

 $\phi = 0.02$

ASAS J082552-1622.8

Spektroskopia: Keck I + HIRES, rms~0.8 km/s

 $T_{0,ASAS} = 2451869.18$ $P_{ASAS} = 1.52852 d$

 $K_1 = 101.97$ km/s $K_2 = 104.27$ km/s $v\gamma = 51.92$ km/s

 $M_1 \sin^3(i) = 0.702 M_{SUN}$ $M_2 \sin^3(i) = 0.686 M_{SUN}$

Fotometria: Elizabeth, rms: V~0.008, I~0.03 mag

Układ:

 $T_0 = 2451869.201387$ P = 1.528484598 d $a = 6.25202 R_{SUN}$ e = 0.0 i = 88.842 degq = 0.97440 <u>Plama</u>: φ = 112.5 deg (maksimum w fazie 0.3125) θ = 83.7 deg r = 48.1 deg $T_{SPOT}/T_{eff,1} = 1.2905$ ($T_{SPOT} = 6218 K$)

φ=0.02

 $\frac{\text{Składnik główny:}}{M_1 = 0.713 M_{SUN}} \\ R_1 = 0.71 R_{SUN} \\ \log g_1 = 4.59 \\ T_{\text{eff},1} = 4820 K \\ M_{\text{bol},1} = 6.36 mag$

 $\frac{\text{Składnik wtórny:}}{M_2 = 0.695 M_{SUN}}$ $R_2 = 0.68 R_{SUN}$ $\log g_2 = 4.62$ $T_{\text{eff},2} = 4720 K$ $M_{\text{bol},2} = 6.54 mag$

ASAS J011328-3821.1

Prawdopodobnie układ podwójno-podwójny, taki jak ten:

Harmanec et al. 2007

Trzy składniki linii emisyjnej H α

φ=0.72

 Spektroskopia: Radcliffe, Shane; rms~10 km/s (różowe punkty – TODCOR, niebieskie - Hα)

 $K_1 = 119.3 \text{ km/s}$ $K_2 = 163.2 \text{ km/s}$ $v\gamma = 17 \text{ km/s}$

 $M_1 \sin^3(i) = 0.60 M_{SUN}$ $M_2 \sin^3(i) = 0.44 M_{SUN}$

Zmierzona prędkość trzeciego (lub czwartego) składnika zmienia się o ok 50 km/s w ciagu 1 h

KONIEC dziękuję za uwagę

