Astrometry of Visual Binaries with Adaptive Optics

Krzysztof Hełminiak (NCAC, Toruń) [Kristof Hell-mean-yuck]

collaboration with: Maciej Konacki (NCAC, Toruń) Josh Eisner (Univ. of Arizona) Shri Kulkarni (CalTech)

"The universe is a procession with measured and perfect motion" Walt Whitman, "Leaves of Grass" 1855

Schedule:

In the end Frank had to cancel his dinner date because his busy schedule just wouldn't allow it.

- Why and what?
- Detecting planets with astrometry
- Observations
- Problems and things to remember (AO, FOV, PSC, AR)
- Precision, stability & mass limits
- Summary

Why?

- Because we want to discover planets!
- To do that astrometrically, we need to go down to ~100 µas precision
- ... possible (and was done) with interferometers
- ... but using a single-mirror telescope is easier, faster and cheaper
- Visual binaries make that business a bit easier

Planets detected astrometrically

DISCOVERED:

DETECTED: several

eps Eridani (Benedict et al. 2006)

Planets in binaries

- P-, **S-** and L-type
- Most of the planets were found around single stars
- Most of planet-harboring binaries are very wide (~100 AU and much more)
- It is not confirmed if the binarity makes planet formation easier or not (rather not)
- Dynamics is much more interesting

Aims (what):

- Check if the CCD astrometry of visual binaries and multiples with Adaptive Optics (AO) can be a tool for searching for exoplanets in binaries.
- Estimate the precision possible to achieve by <u>obtaining a random</u> <u>scatter</u> of the measurements (the biggest fun)
- Give the requirements needed for making precise measurements

So far, so good... Some precision records:

- Pravdo & Shaklan (1996):
 ~150 μas
- Seifhart et al. (2007):
 ~50 μas
- Cameron et al. (2008):
 <100 μas
- Us (2008): 38 μas

(HST and interferometry not included)

Detecting (S-type) planets with astrometry

 $\Theta > 3\sigma_{o}$

Detection limit: $a M_P > 3\sigma_\rho d M_S$

Pravdo & Shaklan, 1996

a $M_{P}[AUM_{J}] > 1.5625 \sigma_{\rho} d M_{S}[mas pc M_{O}]$

Observations

- 8 nights between Mar. and Nov. 2002
 - 9 objects observed with Hale telescope + PHARO (Mt. Palomar): GJ 195, 352, 458, 507, 661, 767, 860, 873, 9071 and NGC 6871
 - 3 objects observed with Keck II telescope + NIRC2 (Mauna Kea): 56 Per, GJ 300, 569
- J and K bands + AO

•

- Dithering + field rotation (Keck II)
- Scales: 39.91, 25.10 (Hale); 39.686 i 9.942 mas/pix (Keck II)
- NO DEDICATED CALIBRATION OBJECTS

Star	Sp. Type	Magn.	(Band)	$\pi \left[mas ight]$	Comment	Telescope
56 Per B	???	8.7	(V)	24.00(.91)	double	Keck II
GJ 195 A	M1	10.16	(V)	72.0(.4)		Hale
GJ 195 B	M_{2}	13.7	(V)	72.0(.4)		Hale
$AG+45\ 517$???	11	(V)	???	field	Hale
GJ 300 B	K7III	8.39	(J)	166(11)	double, field	Keck II
GJ 352 A	M4	10.07	(V)	94.95(4.31)		Hale
GJ 352 B	M4	10.08	(V)	94.95(4.31)		Hale
GJ 458 A	M0	9.86	(V)	65.29(1.47)		Hale
GJ 458 B	M3	13.33	(V)	65.29(1.47)		Hale
GJ 507 A	M0.5	9.52	(V)	75.96(3.31)		Hale
GJ 507 B	M3	12.09	(V)	75.96(3.31)		Hale
GJ 569 Ba	M8.5V	11.14	(J)	101.91(1.67)	double(?)	Keck II
GJ 569 Bb	M9V	11.65	(J)	101.91(1.67)		Keck II
GJ 661 A	M3	10.0	(V)	158.17(3.26)		Hale
GJ 661 B	M4	10.3	(V)	158.17(3.26)		Hale
${ m GJ}$ 767 ${ m A}$	M1	10.28	(V)	74.90(2.93)		Hale
${ m GJ}$ 767 ${ m B}$	M2	11.10	(V)	74.90(2.93)		Hale
GJ 860 A	M3	9.59	(V)	249.53(3.03)	variable	Hale
GJ 860 B	M4	10.30	(V)	249.53(3.03)	$_{\mathrm{flare}}$	Hale
CCDM 22281H	???	13.8	(V)	???	field	Hale
GJ 873 A	M3.5e	10.09	(V)	198.07(2.05)	flare	Hale
GJ 873 B	G	10.66	(V)	198.07(2.05)	double, field	Hale
${ m GJ}$ 9071 ${ m A}$	$\mathbf{K7}$	10.2	(V)	72(4)		Hale
${ m GJ}$ 9071 ${ m B}$	M0	14	(B)	72(4)		Hale

Data

- Over 30,000 CCD frames
- Standard reduction with IRAF package
- Calculating centroids and fitting elliptical gaussoids
- Checking the influence of systematic effects with Allan variance

AO correction quality

Field of view

Problems occur when most of the star's light is collected by 1 pixel

Pixel scale calibration

HALE:

- Complicated model of geom. distortion, beam tilt and gravity variations by Metchev (2006)
- For 1 night average pixel scale and North vector from Metchev & Hillenbrand (2004)
- For the rest of the nights: own calibrations based on NGC 6871

KECK II:

- Simple model of geom. distortion from Thompson et al. (2001)
- Pixel scale the same as nominal

...and the results

Allan (not Alda) variance

$$\sigma_{Ax}^2 = \frac{1}{2(M+1-2l)} \sum_{n=0}^{M-2l} \left(\frac{1}{l} \sum_{m=0}^{l-1} r_{n+m}^x - r_{n+l+m}^x \right)^2$$

Allan Alda's pictures: http://distortrait.blogspot.com

Atmospheric Refraction

$$R \equiv z_t - z_a \simeq 206265 \left(\frac{n^2 - 1}{2n^2}\right) \operatorname{tg} z_t \quad [arcsec]$$

$$n(\lambda, p, T, p_w) = 1 +$$

$$+ \left[64.328 + \frac{29498.1}{146 - \lambda^{-2}} + \frac{255.4}{41 - \lambda^{-2}} \right] \frac{pT_s}{p_s T} 10^{-6} - \frac{100}{100} \left[\frac{100}{100} + \frac{100}{100} + \frac{100}{100} \right] \frac{100}{100} + \frac{100}{100} \left[\frac{100}{100} + \frac{100}{100} + \frac{100}{100} \right] \frac{100}{100} + \frac{100}{100} \left[\frac{100}{100} + \frac{100}{100} \right] \frac{100}{100} + \frac{100}{100} + \frac{100}{100} \left[\frac{100}{100} + \frac{100}{100} \right] \frac{100}{100} + \frac{100}{10$$

$$-43.49 \left[1 - \frac{0.007956}{\lambda^2}\right] \frac{p_w}{p_s} 10^{-6}$$

Roe 2002

On star's position:

- The AO system guides in visual
- The observation is in IR
- Wavelength dependency leads to a movement of the star along the chip

On relative astrometry:

- Stars at different zenithal distances z₁ and z₂
- ...thus are affected by different refractions
- Apparent shift by a vector R₂₁ along the Z direction (opposite to Z)
- Second star seen at position B relatively to point A, while in reality is at position B'

Hełminiak 2008

Hełminiak 2008

In every triplet:

- Top: $p = 1013.25 \text{ hPa} = p_s$
- Middle: p = 813.25 hPa
- Lower: p = 613.25 hPa

dz	dT	dp	Sp.T	F.Ap.	dT	dp	Sp.T.	F.Ap.
[as]	[K]	[hPa]	-1		[K]	[hPa]	-1	
$\sigma \sim 1$	mas:				[]			
	$z = 0^{\circ}$				$z = 20^{\circ}$)		
1	n-n	n-n	no	no	n-n	n-n	no	no
5	n-n	100	no	no	n-n	100	no	no
15	10	50	no	no	1	50	no	no
	$z = 40^{\circ}$			$z = 60^{\circ}$				
1	n-n	n-n	no	no	n-n	100	yes	no
5	10	100	no	no	10	50	yes	no
15	10	50	no	no	5	10	yes	no
$\sigma \sim 1$	00µas:							
	$z = 0^{\circ}$				$z = 20^{\circ}$)		
1	10	100	no	no	10	100	no	no
5	10	10	no	no	5	10	no	no
15	1	5	no	no	0.5	5	yes	no
	$z = 40^{\circ}$			$z = 60^{\circ}$				
1	10	50	no	no	10	10	yes	no
5	1	10	yes	no	1	5	yes	no
15	1	5	yes	no	5	10	yes	yes
$\sigma \sim 1$	$\sigma \sim 10 \mu as$:							
	$z = 0^{\circ}$				$z = 20^{\circ}$)		
1	1	10	no	no	1	10	yes	no
5	1	1	no	no	0.5	1	yes	no
15	0.1	1	no	no	0.1	0.5	yes	no
	$z = 40^{\circ}$			$z = 60^{\circ}$				
1	1	5	yes	no	1	1	yes	no
5	0.1	1	yes	no	0.1	0.5	yes	no
15	0.1	0.5	yes	no	0.05	0.1	yes	yes
$\sigma \sim 1$	$\sigma \sim 1 \mu as$:							
	$z = 0^{\circ}$				$z = 20^{\circ}$	0		
1	0.1	1	no	no	0.1	1	yes	no
5	0.1	0.1	no	no	0.1	0.1	yes	yes
15	0.01	0.1	no	yes	0.01	0.05	yes	yes
	z = 40)°			$z = 60^{\circ}$	9		
1	0.1	0.5	yes	no	0.1	0.1	yes	no
5	0.01	0.1	yes	yes	0.01	0.05	yes	yes
15	0.01	0.05	yes	yes	0.005	0.01	yes	yes

Hełminiak 2008 (arXiv:0805.3369v2)

Weather requirements

- Are we reaching the limit of groundbased astrometry?
- It CAN be impossible to measure positions with precision below 10 µas due to small variations of weather conditions in the telescope's vicinity

More encouraging – – detection limits

Overnight stability

Star	Lowest	Dist.	Mass A	Limit for A	Mass B	Limit for B	Tel.
(GJ No.)	$\sigma [mas]$	[pc]	$[M_{\odot}]$	$[AU \cdot M_J]$	$[M_{\odot}]$	$[AU \cdot M_J]$	
195	0.12	13.89	0.53	1.38	0.19	0.50	Hale
352	1.11	10.53	0.44	8.04	0.41	7.49	Hale
458	0.28	15.32	0.40	2.68	0.37	2.48	Hale
507	0.33	13.16	0.46	3.12	0.37	2.51	Hale
569B	0.11	9.81	0.071	0.116	0.054	0.088	Keck
661	0.038	6.32	0.379	0.16	0.34	0.15	Hale
767	0.09	13.35	0.44	0.83	0.40	0.75	Hale
860	0.048	4.01	0.34	0.10	0.27	0.09	Hale
873	0.57	5.05	0.36	1.62	unknown	unknown	Hale
9071	0.20	13.89	0.53	2.22	0.49	2.05	Hale

 $a M_P > 3\sigma_\rho d M_S$

Hełminiak & Konacki 2008 (arXiv:0807.4139v1)

Statistics

- 76 measurements of binaries (and 50 of NGC 6871)
- Less than 20% with precision worse than 0.5 mas (due to small number of single frames or large difference in brightness)
- Almost 20% with precision better than 0.1 mas (best: GJ 661 and GJ 860)
- 84 calculated detection limits
- 6% larger than 6 AU M,
- Almost 40% smaller than 1 AU M₁

Errata – are parallaxes really the same?

- First component at 10 pc
- Companion 100 AU further
- Distance to the second component:
- 10 pc + 100 AU =

10.000484813 pc

- Parallaxes difference: ~5 μas
- For 1st star at 5 pc: ~19.4 μas

Yes... almost... Just be careful..

More about stability

Pair	$rms \; [mas]$
GJ 661 1-2	0.282
GJ 860 1-2	0.216
1-3	2.154
2-3	2.595
GJ 873 1-2	1.127
1-3	1.282
2-3	0.309
NGC 6871 1-2	0.412
1-3	0.470
1-4	1.271
1-5	0.872
2-3	0.345
2-4	1.324
2-5	0.717
3-4	1.304
3-5	0.763
4-5	2.671

Long-term stability (Hale only)

rms of a 2-nd order polynomial fit to results from at least 5 night

Summary

- We obtained one of the most precise astrometric measurements from the ground with a single-mirror telescope to date
- We emphasize the need of proper AO correction, FOV selection, distortion model and AR subtraction
- We conclude that Hale and Keck II telescopes are able to look for planets around many nearby stars
- We are waiting for some **EASY** questions :)

THANK YOU FOR YOUR ATTENTION

